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Abstract— Gearboxes are ubiquitous items of equipment in
industry and pitting is one of the most frequent faults. To
prevent the propagation of this fault to mechanical failure, it
is necessary to monitor its initiation and evolution. Most of
the current fault detection methods rely on vibration signals.
The main idea of our work is to determine the detection
potential and sensitivity of alternative information sources, like
electrical current and sound emission. Such combination of the
information from different sources provides more robust and
cost effective solution.

This paper presents the results of the experimental study of
pitting fault detection exploiting sound emission and electrical
current in comparison to vibration. The study is carried on a
motor-generator test rig with one stage gearbox.

I. INTRODUCTION

Most of the unplanned machines shutdown are caused
by mechanical faults. In this manner, early fault detection,
progress monitoring and prognosis are important steps in
avoiding these unplanned shutdowns. Since gearboxes are
one of the most common mechanical elements present, there
has been done a lot of work in the field of gear fault
detection.

The research diversity is mainly aimed towards using
different signal processing tools for better feature extraction
from the vibration and sound emission signals. In that man-
ner one of the most commonly used techniques is envelope
analysis [9]. Recently, Antoni and Randall have proposed the
usage of cyclostationary analysis through the analysis of the
spectrum of the squared envelope signal [10],[1].

Apart from the analysis in the pure frequency domain,
the time-frequency analysis have proven also successful in
the machine condition monitoring. The usage of wavelet
transform [13] has shown the capabilities of signal analysis
on the whole time-frequency range.

All signal processing tools are mainly used to analyze the
vibration signals [2], [11] or sound emissions [3], [12] as a
information source for pitting faults. Additionally oil debris
analysis has been used to detect wear particles [8]. There are
very few results presenting the possibility of using electrical
current as an information source for fault detection outside
the motor itself [6], [16].

In most of the cases results are obtained by observing the
signal’s signature obtained from seeded faults [4]. There are
some examples where multiple sources have been used [14].

Fig. 1. The test bed

In both cases, seeded and natural fault progression, vibration
signals alone or a combination of vibration with oil or sound
emission have been used.

Our main goal is to determine the fault detection capability
using a combination of vibration, sound emission and elec-
trical current. In that manner we are testing the detectability
and sensitivity of each of these three sources in monitoring
of natural progressing gear pitting fault.

II. EXPERIMENTAL SET-UP

The signals used for our analysis are collected from an
experimental test bed which consists of a motor-generator
pair with a single stage gearbox (Fig. 1). The motor is a
standard DC motor powered through a Simoreg DC drive.
A generator has been used as a break. The generated power
has been fed back in the system, thus achieving the breaking
force.

Vibration signals have been gathered on 8 points: motor
output shaft (Z axis), gearbox input shaft (X, Y and Z axis),
gearbox housing (X, Y and Z axis) and gearbox output
shaft (Z axis). All signals are gathered using Brüel & Kjær.
The vibration signals were sampled with 80 kHz. Sound
emission was recorder above the gearbox. The microphone
was placed within a isolating tube pointing downwards. The
tube converts the microphone to a pointed microphone, thus
isolating the sound recording from any sound that might be
emitted from the surrounding environment.

Gear ratio was 24:16, on motor vs. generator respectively.
Roller bearings were used on both gearbox shafts.
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III. SINGAL ANALYSIS

A. Signal model

For a meshing gear pair, that is operating under certain
load, the teeth deformations occur. This deformations are
dependent on the load and number of teeth in contact. The
vibration signal generated from this process has spectral
components at GMF1 and its harmonics. Amplitudes of these
components are directly dependent on the load amplitude.
For the firstM harmonics GMF(fgm = fgN) the signal is
defined as:

x1(t) =
M
∑

m=1

A(F )mcos(2πtfgmm+ φm) (1)

whereA(F )m is the amplitude of themth harmonics of the
GMF, that is dependent on the loadF , the number of teeth
N , meshing frequencyfm, the shaft rotational frequencyfg

and the phaseφm of themth harmonic of the GMF.
The instantaneous frequency of the shaftfg(t), the vibra-

tion signal is rearrange as a function of the angleθg(t). The
equation (1) is transformed as:

x1(t) =
M
∑

m=1

A(F )mcos(mNθg(t) + φm) (2)

whereθg(t) is the shaft position at the momentt.
Taking in account the geometrical faults of the teeth

(manufacturing errors and non-equal finishing), we obtain
additional amplification of the amplitudes of GMF and its
harmonics:

x1(t) =

M
∑

m=1

(A(F )m + Em) cos(mNθg(t) + φm), (3)

whereEm is the load of themth harmonic of the GMF.
The load variation, that is periodical with the angle of the

shaftθg(t), generates amplitude modulation of the signal.
The function of the amplitude modulation can be written

as:

α(θg(t)) =

K
∑

k=1

akcos(kθg(t) + κk) (4)

where ak and κk, are the amplitude and phase ofkth
harmonic of the shaft rotation respectively.

The modulated signal can be written as:

x1(t) =

M
∑

m=1

(A(F )m [1 + α(θg(t))] +Em)×

cos(mNθg(t) + φm)

(5)

The frequency modulation of the signal, which occurs due
to the variation of the rotational speed, is approximated with
phase modulation. The function of the phase modulation is
writtens as (4):

β(θg(t)) =

K
∑

k=1

bkcos(kθg(t) + χk) (6)

1GMF gear mesh frequency

wherebk andχk, are the frequency modulation of thekth
harmonic of the GMF and phase modulation of thekth
harmonic of the GMF respectively.

The frequency modulated signals is:

x1(t) =

M
∑

m=1

(A(F )m [1 + α(θg(t)) + Em]×

cos(mN(θg(t) + β(θg(t)) + φm)

(7)

The sum of the influences, described with (7), represents
the first part of the signalx1(t). The second part of the signal
x2(t) is generated by the components, whose occurrence is
not deterministic. Those components are due to errors in
manufacturing, and additional impulses which are produce
by different localized errors on the teeth. Amplitudes of
those vibrations are not dependent on the load or rotational
speed. They can be described asKth harmonics of the shaft
rotational frequency:

x2(t) =

K
∑

k=0

Dkcos(kθg(t) + ξk) (8)

whereD(k) is the amplitude of thekth harmonic of the
GMF andξk is the phase of thekth harmonic of the GMF.

Now we can write the vibration signal, that is generated
from the meshing teeth as:

x(t) =

M
∑

m=1

[(A(F )m [1 + α(θg(t))] +Em)×

cos(mN(θg(t) + β(θg(t))) + φm)]

+
K

∑

k=0

Dkcos(kθg(t) + ξk).

(9)

This mathematical vibration model is influenced by a lot
of factors, which are generating far more complex signal.
Different faults are represented as amplitude modulation
α(θg(t)) or frequency modulationβ(θg(t)) of the original
signal. These amplitude and frequency modulations occur as
a sidebands of the GMF and its harmonics, i.e.m ·fu±k ·fg.
With envelope analysis, i.e. with the analysis of the sidebands
of the GMF and its harmonicsm · fu, we obtain a lot of
information about the nature of the fault.

B. Envelope analysis

The spectrum of the envelope signal is obtained on basis
of the Hilbert transform. The envelope of the signalx(t)
is obtained by the amplitude of the analytical signal. The
analytical signalxa(t) is a complex signal whose real part is
the original signalx(t), and the imaginary part is the Hilbert
transform of the original signalx(t) (10).

xa(t) = x(t) + iH [x(t)] = a(t)eiφ(t). (10)

whereH [x(t)] is the Hilbert transform of the signalx(t):

H [x(t)] =
1

2π

∫ +∞

−∞

x(t)

t− τ
dτ. (11)
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Fourier transform of the analytical signalxa(t) is:

Xa(t)(f) = X(f) + jH [X(t)] =











2X(t) for f > 0,

X(t) for f = 0,

0 for f < 0.
(12)

This shows that the analytical signal has specter only in the
positive frequency range. This characteristics can be used for
the calculation of the analytical signal [5].
By calculating the amplitude of the analytical signal (10)

a(t) =
√

x2(t) +H2[x(t)] (13)

we obtain the envelope of the signal.
It was shown by Ho and Randall [5] that by not doing

the square root of the amplitude, thus obtaining the squared
envelope, we may obtain better results. This square envelope
is used when the SNR2 is relatively low.

C. Wavelet packet decomposition

A wavelet packet functionωm
j,k(t) is defined as [7]

ωm
j,k(t) = 2j/2ωm(2jt− k) (14)

where j and k are are the scaling (frequency localization)
parameter and the translation (time localization) parameter,
respectively;m = 0, 1, . . . is the oscillation parameter; and
ωm(t) without any subscripts should be considered asωm

j,k(t)
with j = k = 0.

The first two wavelet packet functions(m = 0, 1, j = k =
0) are also called the scaling functionφ(t) and the mother
waveletψ(t), as shown below:

ω0(t) = φ(t)
ω1(t) = ψ(t)

(15)

The other wavelet packet functions form = 2, 3, . . ., are
defined through the following recursive relations:

ω2m(t) =
∑

k

h(k)ωm
1,k(t)

ω2m+1(t) =
∑

k

(−1)kh(−k + 1)ωm
1,k(t)

(16)

Therefore, we have:

ω2m(t) =
√

2
∑

k

h(k)ωm(2t− k)

ω2m+1(t) =
√

2
∑

k

(−1)kh(−k + 1)ωm(2t− k)
(17)

whereh(k) = 1√
2
〈φ(t), φ(2t − k)〉. Where〈·, ·〉 stands for

inner product.
For eachm = 0, 1, . . ., the function cluster

{

2j/2ωm(2jt− k)|j, k = . . . ,−2,−1, 0, 1, 2, . . .
}

constitutes the normal orthogonal basis. In other words for a
certainm′ the wavelet packet functions2j/2ωm′

(2jt−k) are
located in a specific frequency band. All the frequency bands
constitute a normal orthogonal basis in the time-frequency

2SNR signal to noise ratio

subspace. The time-frequency spaceVm can be formed
by the combination ofω2m

j,k (t)|j, k = . . . ,−1, 0, 1, . . . and
ω2m+1

j,k (t)|j, k = . . . ,−1, 0, 1, . . .. Wavelet packet coeffi-
cients of a signalx(t) are embedded in the inner product
of the signal with every wavelet packet function, denoted by
Pm

j (k)|k = . . . ,−1, 0, 1, . . . and given as:

Pm
j (k) = 〈x, ωm

j,k〉 =

∫ ∞

−∞
x(t)ωm

j,k(t)dt (18)

wherePm
j (k) denotes themth set of wavelet packet de-

composition coefficients at thejth scale parameter andk
is the translation parameter. All frequency components and
their occurring times are reflected inPm

j (k) through change
of m, j, k. EachPm

j (k) coefficient measures a specific sub-
band frequency content, controlled by the scaling parameter
j and the oscillation parameterm. The essential function of
WPT is the filtering operation throughh(k) andg(k).

By computing the full wavelet packet decomposition on a
data vectorx(t), for thejth level of decomposition, we have
2j sets of sub-band coefficients of lengthN/2j. The total
number of such sets located at the first level to thejth level
inclusive is(2j+1−2). The order of these sets at thejth level
is m = 1, 2, . . . , 2j. Then, each set of coefficients can be
viewed as a node in a binary wavelet packet decomposition
tree. Wavelet packet coefficients,Pm

j (k)|k = 1, 2, . . . , N/2j,
correspond to node(j,m). From each node(j,m), we obtain
a reconstructed signalP 1

0 (k)|k = 1, 2, . . . , N by setting
the coefficients of all other nodes at thejth level to zero.
Reconstructed signalsP 1

0 (k)|k = 1, 2, . . . , N obtained from
Pm

j (k)|k = 1, 2, . . . , N/2j reflect the change of the signal
with time in the frequency range of[(m − 1)Fs/2

j+1,m ·
Fs/2

j+1], whereFs is the sampling frequency. As a result,
there arem sets of reconstructed signals that contain the nec-
essary information for detection of characteristic frequencies
of faults in different frequency ranges.

IV. RESULTS

The test run was done with a constant torque of 82.5
Nm and constant speed of 990rpm. This speed of 990rpm
generates GMFfgm = 396Hz, rotational speed of input
shaft fi = 16.5Hz, and rotational speed of output shaft
fo = 24.75Hz.

During the experiment run vibration and electrical current
signals were sampled with 80kHz and the sound emissions
were sampled with 44kHz. The signals were sampled every
10 min. The duration of the sampled signal was 5 seconds,
which yields 400 000 samples per signal for vibration and
electrical current, and 220 000 samples for sound emission
signal.

In order to speed up the experiment, the contact surface
between the gears was decreased to1/3 of the original
surface. In this manner the pressure excreted on the gear teeth
was bigger thus generating the fault faster. This displacement
is shown on Fig. 2(a).

The test started with a brand new gears. After a 1000
hours run the gears were swapped with a heavily pitted gears,
shown on Fig. 2(b), and the experiment was resumed for
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another 200 hours. In the new set of gears, the gear mounted
on the output shaft had more damage. The gear state after
1000 hours is shown on Fig. 2(a).

(a) Scuffing

(b) Strong pitting

Fig. 2. Two different gear damage

A. Vibration analysis

According to the vibration signal model (9) the vibration
signals were analyzed with envelope analysis method. Fig. 3
shows the trends of a particular components of the amplitude
spectra. It can be noticed that the spectra show some increase
in the signals around 300 hrs. After this initial increase the
vibration levels decrease. The increase trend reappears after
500 hours, from which point it show steady increase.

This non-monotonic behavior of the vibration’s trend is
due to the effect of self polishing i.e. after an initial fault
evolved (after 300 hrs) the natural wear of the gears polished
the surface and the vibration decreased. Although there is a
decrease, it can be seen in the GMF graph in Fig. 3 that the
level after 300 hrs is bigger then the initial level of vibrations.

In order to compare the increase of vibration levels of
this initial fault (scuffing) with a heavy pitting fault, the
gears were swapped with heavily pitted gears. The compared
trends are shown on Fig. 4, i.e. the heavy pitted gear signals
are added to the original graphs Fig. 3, thus covering the
time from 650hrs onwards. There is a big increase in the
vibration levels. Similarly like the initial run, the vibration
trends show non-monotonic behavior. After initial 50 hrs
the vibration levels decreased. This initial time might be

considered like a run-in time. After the run-in time, the non-
monotonic trend continues, however during the whole time
the level of vibration is hugely bigger then the initial state.

Trends presented on Fig. 4 are conforming with the fact
that the output gear has bigger damage then the input gear.
Throughout the run with the heavily pitted gears thefo

component is several times bigger then thefi component.
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Fig. 3. Vibration trends
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Fig. 4. Vibration trends with added damaged gear

B. Sound emission

The sound emissions were gathered using a microphone
positioned directly above the gearbox. The microphone was
shielded so it was able to pickup sounds only from the
surface directly below. In this manner we tried to isolate
any possible environmental sounds that might interfear with
the measurements.

Similarly like the vibration signals, the sound emission
was analyzed using the envelope method Eq. (13). The trend
of the GMF is shown on Fig. 5. Unlike the vibration signals
the sound emission are showing constant trends throughout
the experiment. After approx. 400 hrs. the first increase in
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the levels of GMF occurs. From this moment onwards the
increasing trend is steady.

The same observation applies and for the case of heavily
pitted gears, shown on Fig. 6, i.e. the signals covering the
time from 650hrs. After the initial run-in (around 650-th
hour) the sound emissions decreased a level and stayed
constant. The level of sound GMF amplitude in this case
is significantly bigger then the same level during the run of
gears with scuffing fault (0-650 hrs.).

Similarly like the vibration signal, the trends for the
heavily pitted gears (Fig. 6), are showing bigger damage
of the output gear then the damage on the input gear. The
amplitudes of thefo components are almost 2 times bigger
then the components of thefi frequency.
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Fig. 5. Sound emission trends
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Fig. 6. Sound emission trends with added damaged gear

C. Electrical current

The supply to the DC motor is obtained by rectifying
3 phase AC power supply. This convertion generates a
waveform as shown on Fig. 7. This signal has dominant
frequency components at 300Hz, which is the supply line

frequency. As shown in the [15] the torsional torque changes
are reflected as a side bands of the supply line frequency
of the electrical machines. Due to this effect the envelope
analysis does not yields good results.

We have applied wavelet packet decomposition on the
electrical current signal. The signal was decomposed using
discrete Meyer wavelet on 13 levels which produced a
wavelet leaves covering 4.88 Hz of bandwidth.

We have monitored the GMF and shaft frequencies side-
bands of the line frequency (300Hz), i.e

n300 ±GMF

n300 ± fi

n300 ± fo

(19)

The trends of the signal during the run in the first 650
hours is shown in Fig. 8. It can be noticed that the sidebands
of the rotational speed of the input and output shafts don’t
show any trends. On the other hand, the low sideband GMF
trend, shown on the middle graph on Fig. 8, show increase
in its amplitude after 500 hours of operation. This moment
is comparable to the results obtained with the vibration and
sound emission signals.

Observing the same trends but for the period when the
machine was running with a heavily pitted gears (Fig. 9),
it is becoming evident the increase of the GMF sideband
component. This increase is approximately twice in the am-
plitude. Additionally the side band of thefo, the output shaft
shows increase, pointing towards damage of the output gear.
This results is again conforming with the results obtained
from analysis of the previous two signals.
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Fig. 7. Electrical signal

D. Compared sensitivity

The compared signal trends are shown on Fig. 10. First
two graphs are showing trends of the input (red) and output
(blue) shaft frequency components. The third graph shows
the trends of the sideband of 1296Hz (900Hz + GMF) of
the electrical current signal. Even when the faults are minor,
like in this case scuffing fault, the detection is possible
by monitoring of any of the three signals. From all three
the electrical current has less sensitivity but even with that
sensitivity it can be considered as a reliable source for
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Fig. 8. Electrical current trends
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Fig. 9. Electrical current trends with added bad gears

pitting detection. Sound emission signals are able to detect
the initial fault generation earliest. In comparison the sound
emission show steady increase in amplitude levels of a
certain frequency components, unlike the vibration signal
where the amplitude levels are fluctuating due to the self
polishing.

V. CONCLUSION

By comparing the results obtained with this experiment,
it is shown that in both cases, scuffing and heavy pitting,
sound emissions and electrical current may be used for fault
detection. By adding multiple sources to the detection system
we are able to increase the accuracy of the fault detection.
This increase in the accuracy leads towards increase of the
reliability of the fault detection system.

In comparison with the vibration signals, sound emissions
and electrical current can be acquired by far cheaper equip-
ment, as it was done in this work.

This leads to a conclusion that a reliable and cheap fault
detection system may be build using combination of any of
three examined sources, or all of them like in our case.
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